Reverse Engineering and Functional Analysis

WHAT is Reverse Engineering?

Reverse engineering (RE) is the process of taking something apart and analyzing its workings in detail, usually with the intention of understanding its structure, function, and operation.

WHY is Reverse Engineering Used?

- Documentation
- Discovery
- Investigation
- Product Improvement

WHY is Reverse Engineering Used?

- Documentation
 - No existing documentation
 - Interoperability
 - Maintenance
WHY is Reverse Engineering Used?

- **Discovery**
 - Academic/research/learning
 - Curiosity

- **Military or commercial intelligence**

WHY is Reverse Engineering Used?

- **Investigation**
 - Analysis and testing
 - Document patent infringement
 - Forensics: Design failure

- **Improve or redesign a product**
 - Increase efficiency
 - Improve reliability
 - Improve manufacturing techniques
 - Eliminate failure mode
 - Reduce cost
 - Increase ease-of-use
 - Reduce negative environmental impacts
 - Recycle parts
 - Etc.
Reverse Engineering Tools

- Micrometers
- Caliper
- Optical Probe

Medical Imaging

Interactive Visualization

Stages of Reverse Engineering

- Visual Analysis
- Functional Analysis
- Structural Analysis

Functional Analysis

After a product has been selected, a non-destructive **functional analysis** is performed.

- First, the product's **purpose** is identified.
- Next, observations are made to determine how the product **functions**. These observations are recorded in detail.
- Lastly, the system's **inputs** and **outputs** are listed.

Functional Analysis Example

Purpose

The **purpose** of a toothbrush is to clean teeth and gums to prevent tooth and gum decay. Water and a cleansing paste are used in conjunction with the brush.
Functional Analysis Example

Function
An annotated sketch, with all visible components labeled, is created. A hypothesis is devised to describe (in detail) the sequential operation or function of the device using the sketch as a reference.

Black Box Systems Model

A *black box systems model* is used to identify what goes into and out of the product in order to make it work as a system.

Black Box Systems Model

The *black box* is used to represent the product’s internal components or processes, which are deemed unknown at this point.

Functional Analysis Example

Inputs: Hand Motion, Toothpaste, Water, Energy

Output: Sound, Heat, Waste, Clean teeth and gums